Clinical Quantitative Susceptibility Mapping (QSM): Biometal Imaging and Its Emerging Roles in Patient Care

Yi Wang, PhD,1,2* Pascal Spincemaille PhD,1 Zhe Liu BS,1,2 Alexey Dimov MS,1,2 Kofi Deh BS,1 Jianqi Li PhD,3 Yan Zhang MMEd,4 Yihao Yao MD,1,4 Kelly M. Gillen PhD,1 Alan H. Wilman PhD,5 Ajay Gupta MD,1 Apostolos John Tsouiris MD,1 Ilhami Kovanlikaya MD,1 Gloria Chia-Yi Chiang MD,1 Jonathan W. Weinsaft MD,6 Lawrence Tanenbaum MD,7 Weiwei Chen MD, PhD,4 Wenzhen Zhu MD,4 Shixin Chang MD,8 Min Lou MD, PhD,9 Brian H. Kopell MD,10 Michael G. Kaplitt MD, PhD,11 David Devos MD, PhD,12,13,14,15 Toshinori Hirai MD PhD,16 Xuemei Huang MD, PhD,17,18,19,20 Yukunori Korogi MD, PhD,21 Alexander Shtilbans MD, PhD,22,23 Geon-Ho Jahng PhD,24 Daniel Pelletier MD,25 Susan A. Gauthier DO, MPH,26 David Pitt MD,27 Ashley I. Bush MD, PhD,28 Gary M. Brittenham MD,29 and Martin R. Prince MD, PhD1

Quantitative susceptibility mapping (QSM) has enabled magnetic resonance imaging (MRI) of tissue magnetic susceptibility to advance from simple qualitative detection of hypointense blooming artifacts to precise quantitative measurement of spatial biodistributions. QSM technology may be regarded to be sufficiently developed and validated to warrant wide dissemination for clinical applications of imaging isotropic susceptibility, which is dominated by metals in tissue, including iron and calcium. These biometals are highly regulated as vital participants in normal cellular...

Received Dec 2, 2016, Accepted for publication Feb 10, 2017.

*Address reprint requests to: Y.W., 515 E 71th St., New York, NY, 10021. E-mail: yiwang@med.cornell.edu

From the 1Department of Radiology, Weill Cornell Medical College, New York, New York, USA; 2Department of Biomedical Engineering, Ithaca, New York, USA; 3Department of Physics, East China Normal University, Shanghai, P.R. China; 4Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada; 5Division of Cardiology, Department of Medicine, Weill Cornell Medical College, New York, New York, USA; 6RadNet, Inc., Los Angeles, CA, USA; 7Department of Radiology, Yuyuan Hospital of Integrated Traditional Chinese & Western Medicine, Shanghai, P.R. China; 8Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada; 9Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, P.R. China; 10Department of Neurosurgery, Mount Sinai Hospital, New York, New York, USA; 11Department of Neurological Surgery, Weill Cornell Medical College, New York, New York, USA; 12Department of Medical Pharmacology, University of Lille, Lille, France; 13Department of Neurology and Movement Disorders, University of Lille, Lille, France; 14Department of Toxicology, Public Health and Environment, University of Lille, Lille, France; 15INSERM U1171, University of Lille, Lille, France; 16Department of Radiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan; 17Department of Neurology, Penn State University-Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA; 18Department of Pharmacology, Penn State University-Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA; 19Department of Neurosurgery, Penn State University-Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA; 20Department of Radiology, Penn State University-Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA; 21Department of Radiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan; 22Department of Radiology, Hospital for Special Surgery, New York, New York, USA; 23Parkinson’s Disease and Movement Disorder Institute, Weill Cornell Medical College, New York, New York, USA; 24Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, South Korea; 25Department of Neurology, Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA; 26Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, New York, USA; 27Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut, USA; 28Department of Neurology and Movement Disorders, University of Melbourne, Parkville, Victoria, Australia; and 29Department of Pediatrics, Columbia University, Children’s Hospital of New York, New York, New York, USA
biochemistry, and their dysregulations are manifested in a variety of pathologic processes. Therefore, QSM can be used to assess important tissue functions and disease. To facilitate QSM clinical translation, this review aims to organize pertinent information for implementing a robust automated QSM technique in routine MRI practice and to summarize available knowledge on diseases for which QSM can be used to improve patient care. In brief, QSM can be generated with postprocessing whenever gradient echo MRI is performed. QSM can be useful for diseases that involve neurodegeneration, inflammation, hemorrhage, abnormal oxygen consumption, substantial alterations in highly paramagnetic cellular iron, bone mineralization, or pathologic calcification; and for all disorders in which MRI diagnosis or surveillance requires contrast agent injection. Clinicians may consider integrating QSM into their routine imaging practices by including gradient echo sequences in all relevant MRI protocols.

Level of Evidence: 1
Technical Efficacy: Stage 5

QSM accurately maps strong isotropic susceptibility sources in human tissue—predominantly biometals that are highly paramagnetic (mainly iron in ferritin or deoxygenated heme) or present in high concentrations (mainly calcium in mineralization or calcification). QSM of biometals has been valuable in studying disease processes. QSM is shown to be reproducible across scanner makers, models, field strengths, and sites. QSM can be automated, making it ready for wide dissemination to evaluate its diagnostic and therapeutic value in clinical practice. This will enable clinical investigations both longitudinally and across-centers, ushering in a new era of clinical QSM applications.

QSM can be used to study susceptibility sources other than biometals, particularly white matter (WM) fibers with anisotropic susceptibilities. However, anisotropic susceptibility imaging may require much more technical development to overcome the requirement of multiple orientations before it can be applied in clinical studies. Since most other susceptibility sources in human tissue are much weaker than the dominant biometals, we choose to focus on biometal QSM for timely and promising clinical QSM developments, while emphasizing the connection between pathogenic biometals and patient care that is beyond the reach of conventional MRI. We aim to provide readers with basic information on how to 1) implement a robust and automated QSM in their practice; 2) understand the roles of biometals in human health and diseases; and 3) use QSM measurements of biometals in clinical applications.

Robust and Automated QSM

In this technical section on QSM, we aim to provide a conceptual appreciation of the principles of robust QSM based on the Bayesian approach. For integration into daily clinical workflows, we describe an automated QSM that can be implemented across a wide range of major MRI manufacturers, including GE (Milwaukee, WI), Philips (Best, Netherlands), and Siemens (Erlangen, Germany), at both 1.5 and 3T. The automation and standardization in implementing QSM for biometal imaging is fortunately made possible
by the results from rich variations in the Bayesian approach.²

Fundamental Principles of Robust QSM

The main idea underlying QSM is to extract the susceptibility source from its blooming artifacts on traditional GRE MRI through rigorous biophysical modeling of the MRI signal phase. Phase has historically been largely discarded in routine MRI practice, although MRI data are inherently complex, consisting of half phase and half magnitude. Yet phase data provides rich insight into tissue properties that are complementary to magnitude data.⁴² Recalling that signal in clinical MRI comes from water (and sometimes fat) protons, phase reflects the inhomogeneous magnetic field experienced by protons. The field sources consist of tissue molecular electron clouds and background sources outside tissue. They become magnetized in the MRI main field B_0 according to their magnetic susceptibilities and contribute to the magnetic field as dipoles according to Maxwell’s equation. The tissue field and background field can be separated according to their source location difference (background field removal). Therefore, MRI phase can be processed to generate the tissue field, which can be analyzed according to the dipole field model to determine tissue magnetic susceptibility (Fig. 1).

The magnetic field at a location is the sum of contributions from all surrounding dipole sources. Mathematically speaking, the field is a convolution between the susceptibility spatial distribution and the field of a unit dipole (dipole kernel). Consequently, the determination of tissue susceptibility requires deconvolution of the tissue field with the dipole kernel. Deconvolution in image space is division in k-space (the Fourier convolution theorem). The challenge for this dipole kernel division is that the dipole kernel is zero when an observation point relative to the dipole source is at $±54.7°$ (magic angles) with respect to the B_0 direction. The observed field contribution at the magic angles should be zero, but there is always noise in the measured data. The resulting division-by-zero of noise (and other data deviation from the dipole field type) leads to streaking artifacts along the magic angles in k-space.

These streaking artifacts are cone-like surfaces distinct from tissue surfaces, manifesting as prominent lines in image space along the complementary magic angles in the sagittal and coronal views and rings in the axial view. Early efforts in solving the field-to-susceptibility inverse problem were not effective in identifying and minimizing streaking artifacts; in fact, the truncated k-space division method amplified the streaking artifacts by increasing the deviation from the dipole field type.¹²,²⁰ The Bayesian approach enables robust suppression of streaking artifacts by tenaciously searching for a solution of minimal streaking.¹,¹⁴,¹⁵ Mathematically, minimal streaking is characterized by penalizing interfaces distinct from tissue interfaces depicted on an anatomic MRI during the search for a susceptibility distribution that satisfies the measured field data. Both noise in the field data and uncertainty in the definition of tissue interfaces are considered in a balanced manner (discrepancy principle) during this tenacious search or numerical optimization, which is termed "Bayesian machine learning" in signal processing or data science.⁴³ While this Bayesian reconstruction is robust (convex optimization), its computation is much costlier than Fourier transform in standard MRI reconstructions. Fortunately, modern numerical optimization tools have allowed the search to be completed within a few minutes on a reasonably equipped desktop computer, now enabling robust QSM in a clinical setting.

Automated QSM Processing

Until a commercial product is available to automatically generate QSM, we recommend the following steps to
implement automated QSM on the major scanners for clinical investigations: QSM can be regarded as a postprocessing technique for GRE MRI. The most important factor for enabling QSM is to save faithfully the complex data (both real and imaginary parts, or both magnitude and phase parts) acquired by a GRE MRI, particularly without adulteration of the phase data.

Once QSM protocols are setup on the scanner to produce these images in DICOM format, a technologist, or ideally an automated image management program on the scanner, can forward these images to a dedicated DICOM image server that is listening for incoming GRE images, from which it reconstructs the QSM images and sends them back to the scanner. The process is automatic and is usually completed within 5–10 minutes, depending on the computing performance of the server, the connection bandwidth between the scanner and the server, and the matrix size of the GRE data. The advantage of using DICOM is that it is available on all scanner platforms, does not require installation of extra software on the scanner, and has high quality open source implementations.

Brain QSM: Data Acquisition

Brain QSM can be well automated. A 3D multiecho GRE sequence with flow compensation and unipolar readout gradient can be used to image the whole brain. Parallel imaging with properly reconstructed magnitude and phase images can be turned on to reduce scan time \((R = 2)\). The brain region is automatically segmented,\(^2\) and the top 1/3 of all edges may be regarded as tissue edges.\(^2,30\) A high-resolution whole-brain imaging of 6–12 minutes can be implemented on almost any 3T scanner with the following parameters: number of echoes: 8–12; TE: TE1 minimal; \(\Delta T E = 3\) msec; TR: minimum allowed (typically 50–60 msec); flip angle: 20; bandwidth: 400 Hz/pixel; field of view (FOV): 24 cm; slice thickness: 1–2 mm (further halved with zero interpretation in reconstruction, ZIP); matrix: 400 \(\times\) 300 \(\times\) (88–176).

Body QSM: Data Acquisition

In contrast to brain QSM, body QSM is less well automated. Body data acquisition must consider respiratory and cardiac motion. This can be achieved using breath-hold or navigator gating, and additional ECG triggering for the heart. Fat chemical shifts have to be accounted for in estimating the susceptibility field from the input complex data.\(^45,46\) A body QSM acquisition protocol of 20 seconds breathhold (typically used in liver MRI) can be implemented with the following parameters on a 3T: number of echoes: 6; TE: TE1 minimal; \(\Delta T E = 3\) msec; TR: 15 msec; \(R = 2\); flip angle: 15; bandwidth: 300 Hz/pixel; FOV: 30 cm; slice thickness: 3 mm (further halved with ZIP); matrix: 256 \(\times\) 176 \(\times\) 26.

QSM Challenges and Future Developments

This section has provided only a general conceptual overview of the basic principles of QSM. For a more rigorous account of QSM technology, interested readers are referred to a recent technical QSM review with mathematical details.\(^2\) Adopting QSM in a clinical setting is an implementation challenge that requires support from MR manufacturers and engineers, and availability of a workstation. There is plenty of room to optimize QSM techniques for both general and specific applications, including shortening acquisition time, improving fat-water separation, reducing shadow artifacts, and establishing a zero reference. For QSM reconstruction, the Bayesian framework seems sufficiently powerful for further exploitations; for example, zero reference for brain QSM may be easily achieved by an additional L2 regularization enforcing the susceptibility of the cerebrospinal fluid (CSF) in the ventricles to be near zero.\(^47\)

Biometals in Health and Disease

The clinical utilities of QSM come from bridging molecular pathogenesis with patient management. Accordingly, the susceptibility values measured on QSM should be interpreted with the underlying molecular processes in mind. Fortunately, available biophysical knowledge and biomedical data, as reviewed in this section, can help derive sufficient molecular interpretations of QSM in various clinical applications.

Biometals as Dominant Susceptibility Sources: Iron, Calcification, and Contrast Agents

The magnetic susceptibilities of various materials are well established,\(^48\) with the magnetic periodic table highlighting the strong susceptibility of (ferromagnetic) iron.\(^49\) For the human body in the MRI scanner, molecular susceptibility comes primarily from electrons, which have much stronger (~10\(^3\)) magnetic moments than protons.\(^42\) All orbiting electrons contribute to negative or diamagnetic susceptibility, which is much weaker than (~10\(^{-2}\)) any positive or paramagnetic susceptibility coming from the magnetic moment of an unpaired electron. The major components in a cell consist of water, proteins, lipids, minerals, and carbohydrates,\(^50\) and the most abundant elements in the body include oxygen, carbon, hydrogen, nitrogen, calcium, phosphorus, magnesium, potassium, sulfur, sodium, chlorine, iron, and zinc.\(^51,52\) According to known material susceptibility values and physical chemistry,\(^48\) metallic compounds will dominate susceptibility. Therefore, the high abundance and high susceptibility of cellular iron compounds make iron the major biometal source for tissue QSM.

Of course, the claim that iron is the dominant source for QSM for any given tissue can only be confirmed by biochemical analyses. Immunohistochemistry and mass spectroscopy studies have indicated that iron is the dominant high susceptibility biometal stored primarily in
ferritin.28,53–55 Very high concentrations of calcium in calcification or mineralization (hydroxyapatite crystal)50 causes strong negative (diamagnetic) susceptibility. Additionally, contrast agents (gadolinium and iron compounds) at sufficient concentration in clinical and molecular MRI are highly paramagnetic, therefore showing high values on QSM. While our discussion is generalizable to other biometals, we focus here on iron, calcium, and contrast agents.

Systemic and Brain Iron Homeostases: Heme, Ferritin and Labile Iron, and QSM Sensitivity

The electronic configuration of iron, [Ar]3d64s2, makes iron compounds commonly used as catalysts in organic syntheses.56 By converting between ferrous (Fe2+) and ferric (Fe3+) forms, iron functions as both an electron donor and acceptor with essential roles in human physiology. Approximately 65% of iron in the body is in the Fe2+ form bound to the hemes of the hemoglobin protein in red blood cells (RBCs),50 which are involved in oxygen binding and transportation. Oxygen binding causes a strong heme porphyrin–iron interaction that splits the Fe2+ 3d orbit and pairs the six residing electrons. Consequently, Fe2+ in oxyheme (oH) loses its strong paramagnetism, and oH is actually weakly diamagnetic.57 Therefore, only paramagnetic deoxyheme Fe2+ in the veins contributes to the observed QSM values,58,59 enabling QSM to measure blood oxygen levels noninvasively throughout the body.

Other than iron in RBCs, 0.2–3% of total cellular iron is in the labile iron pool, which is too dilute to show on QSM. Labile iron bioactively participates in cellular biochemistry, including energy metabolism, mitochondrial respiration, lipid synthesis, DNA synthesis, neurotransmitter synthesis, and many other functions.60 Although labile iron is contained in various shielding metalloproteins, it still exhibits the redox property of catalyzing the formation of radicals that can be harmful to nucleic acids, proteins, and lipid membranes.61 Therefore, iron uptake, transport, and storage are highly regulated to maintain homeostasis, involving many proteins including hepcidin, ferroportin, transferrin, transferrin receptors (TfR) 1 and 2, divalent metal transporter (DMT1), and others.61,62 As the body lacks an effective mechanism to excrete iron, it depends upon rigorous hepcidin regulation of intestinal iron absorption to preserve the iron balance. Consequently, iron deficiency, which can cause anemia and may be easily remedied by an iron supplement, is less a concern compared to iron overload, both cerebral and systemic, which can cause extensive tissue damage.62

Systemic iron homeostasis is preserved by efficient use of iron for production of RBCs, prompt recycling of iron from hemoglobin in RBCs at the end of their lifespan, rigorous regulation of iron storage within macrophages and hepatocytes, and meticulous control of intestinal iron absorption (Fig. 2a).62 Brain iron homeostasis is separated from systemic iron homeostasis by the blood–brain barrier (BBB) and CSF barrier. Blood plasma iron may enter the brain through brain capillary endothelium and choroid plexus epithelium (Fig. 2b).63 The mechanisms to maintain iron...
supply to neurons, oligodendrocytes, microglia, and astrocytes are incompletely understood. There are overlapping, but not identical, proteins and mechanisms between systemic and brain iron handling, with transferrin as a major vehicle to diffuse through the cerebrospinal and interstitial fluids for delivering iron to brain cells expressing TfR.

The vast majority (>97%) of iron in cells is stored as Fe\(^{3+}\) (ferrhydrite) in the spherical shell protein ferritin, readily available for conversion into the labile iron pool and measurable on QSM. The ferritin iron concentration is in a homeostasis-determined equilibrium with the labile iron concentration. In pathological conditions, the amount of iron may exceed the storage capability of cellular ferritin. The excess may be stored as Fe\(^{3+}\) in other proteins such as neuromelanin in dopaminergic neurons, hemosiderin in chronic hemorrhage, and hemosiderin in tissue iron overload, becoming poorly available for conversion into the labile iron pool. Fe\(^{3+}\) also accumulates as magnetite in the characteristic amyloid plaque pathology of Alzheimer’s disease. It is assumed that the stored ferric iron (Fe\(^{3+}\)) has the same paramagnetic susceptibility of five unpaired electrons, but this remains to be proven. This highly paramagnetic Fe\(^{3+}\) contributes to the high QSM values observed in the nuclei of the midbrain and subcortical gray matter in all brains, which require high iron levels for generation of neurotransmitters.

Brain Iron Overload in Neurodegeneration

Brain iron overload (more than can be safely transported and stored) is a cause and/or cofactor of a variety of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), Friedreich’s ataxia (FA), and amyotrophic lateral sclerosis (ALS). Iron overload leads to oxidative stress, damaging cellular contents including proteins and mitochondria, and causes inflammatory toxicity (Fig. 3). These features are common to neurodegenerative brains but with iron overload locations varying with diseases.

PD, which affects ~1M Americans, is defined pathologically by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Motor symptoms associated with disruption of dopamine release include resting tremor, rigidity, bradykinesia, and postural instability. The selective SNc neurodegeneration is not yet understood but possibly occurs as a result of a complex interplay of aging, genetic susceptibility, environmental factors, and pro-oxidant iron accumulation in the SNc. The SNc is rich in iron and levels only increase with age. Pathology of PD brain tissue has consistently established elevated iron in the SNc. Noninvasive MRI of PD has demonstrated that nigral iron increase correlates with disease severity, duration, and longitudinal progression. Possible nigral iron elevation pathways include increase of TfR2 iron import elevation of the DMT1, and failure of iron export. Elevation in nigral iron leads to oxidative stress, increasing lipid peroxidation, reducing glutathione levels, damaging DNA, accelerating the aggregation of α-synuclein, and causing mitochondria dysfunction. Iron elevation in PD can also cause proinflammatory microglia activation to contribute to neurodegeneration (Fig. 3).

Systemic Iron Overload

Iron overload occurs with hepcidin deficiency or ferroportin resistance to hepcidin in various diseases, including hemochromatosis, alcohol-related liver disease, and chronic transfusion refractory anemia. The liver is the only organ whose iron content is invariably increased in all forms of systemic iron overload. Excess iron is present both in reticuloendothelial macrophages (Kupffer cells) and in parenchymal cells (hepatocytes), with a spatial distribution dependent on the underlying disorder. With increasing body iron, hepatocytes may eventually exhaust the capacity to safely store the excess iron. Consequent oxidative damage to hepatocytes causes paracrine induction of hepatic stellate cells and portal myofibroblasts, resulting in collagen deposition, fibrosis, micronodular cirrhosis, and, finally, hepatocellular carcinoma.

Iron in Inflammation

Iron is vital to invading pathogens, as microbes use iron for pathogen proliferation, virulence, and persistence. The immune response involves iron utilization by the host and iron restriction to pathogens (Fig. 4). Host and pathogens compete for control over iron homeostasis to influence the course of an infectious disease. In innate immunity, macrophages play critical roles through various activations ranging from proinflammatory (M1) to anti-inflammatory (M2). M1 macrophages release toxins including reactive oxygen species and pro-inflammatory cytokines.
Oxygen and nitrogen species and deplete iron from the environment to limit the iron supply to suspected pathogens (Fig. 4a). M2 macrophages recycle and release iron into the environment to repair tissue (Fig. 4b), clear cellular debris, and remodel surrounding matrices.96 Macrophages have several uptake processes, including through TfR1, DMT1, lactoferrin receptor, heme or hemoglobin scavenger receptor, and erythrophagocytosis; macrophages can export iron only through ferroportin.96,97

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) that affects more than 400,000 Americans.98 The enigmatic pathogenesis of MS includes acute focal demyelination (lesion formation caused by infiltration of T cells and macrophages, frequently around a vein) and chronic tissue damage.99,100 Chronic active WM lesions have iron enriched M1 microglia (innate brain macrophages) at their rims89,101–103 that express proinflammatory cytokines and cause persistent tissue damage, contributing to MS disease progression.89 However, we have yet to understand iron trafficking in the entire MS brain, including 1) iron uptake in the basal ganglia,104,105 and 2) iron decrease in normal-appearing WM during secondary progression.103

Iron in Circulating RBCs

Oxygen consumption is critical for oxidative phosphorylation in aerobic respiration, where cells in the brain, heart, and other organs derive most of their energy.50 The brain represents ~2% of the adult human body weight, yet it consumes 20% of the total oxygen supply.50 Consequently, a deficiency in blood oxygen delivery can easily damage brain tissue, as in hypoxia of AD106 and MS,107 and as ischemia in stroke.108 Quantitative mapping of the cerebral metabolic rate of oxygen consumption (CMRO2) is especially valuable for evaluating these brain disorders.109

Bleeding in the brain or intracerebral hemorrhage (ICH) is a devastating disease with high mortality (about 40% at 1 month).110 Furthermore, microbleeds are increasingly recognized in cerebrovascular diseases, dementia, and normal aging.111 When RBCs leave the vascular space, oHs in RBCs immediately and rapidly become deoxygenated into highly paramagnetic dHs.112 Activated microglia/macrophages start to phagocytose RBCs. RBCs lyse and release degraded hemoglobin called methemoglobin containing Fe³⁺ (more paramagnetic than Fe²⁺),113 as well as other molecules such as carbonic anhydrase.114 Heme in methemoglobin is further degraded by heme oxygenase to release iron. Both iron and carbonic anhydrase contribute to neuronal injury and death in ICH; corresponding therapies are now in clinical trials.115

Calcium Homeostasis: Bone Mineralization and Calcification

Compared to iron, calcium is about 300 times more abundant in the human body,12 with a small fraction (1.1%) in the labile calcium pool (1% is intracellular and 0.1% extracellular), and the vast majority (98.9%) stored in bones. Sufficient labile calcium ions (Ca²⁺) are needed for important cellular functions, including signal transduction, muscle contraction, and cell membrane potential. Excessive labile Ca²⁺ can cause cellular damage, including excitotoxicity, neurodegeneration, and apoptosis. The labile calcium concentration is in equilibrium with bone calcium through release and reabsorption, processes that are tightly regulated by calcitonin/parathyrin hormones from thyroid/parathyroid glands (Fig. 5). These hormones also control calcium absorption and secretion in the intestines and calcium filtration and reabsorption in the kidneys. Calcium homeostasis maintains a serum Ca²⁺ concentration precisely within 1.10–1.35 mM.50 Ca²⁺ can be bound to phosphate salts in
a collagen-proteoglycan matrix to form hydroxyapatite crystals, the process by which bone is mineralized. Calcium also occurs in vascular plaques and in apoptotic cells in necrotic tumors. Highly concentrated calcium salts in mineralized bone or calcification form a strong diamagnetic source measurable on QSM. Disruption in calcium homeostasis can result in a number of pathologic disorders including osteoporosis with decreased bone mass and strength, calcification in atherosclerotic plaques, and calcification in tumors. Osteoporosis is a highly prevalent disorder affecting the older population, particularly Caucasian women after menopause, causing fractures commonly in the hips and forearms. While high-grade tumors contain hemorrhages from leaky blood vessels or dysregulated angiogenesis, calcification tends to be found in various low-grade tumors of the bladder, breast, ovaries, brain, lungs, and gastrointestinal tract, although mechanisms of tumor calcification have yet to be fully clarified. Calcification is commonly observed in atherosclerotic plaques and may play a positive role in plaque stability.

Contrast Agents as Exogenous Biometals

To assess vascularity in MRI, contrast agents (CAs) are routinely used for detection of microvessel wall permeability changes associated with cancer, metastasis, and inflammation, and to map macrovessel lumen stenosis and other deformations in various vascular diseases. In addition to functioning as an imaging agent aiding in diagnosis, magnetic cores can be incorporated into functionalized nanoparticles delivering therapeutic drugs. Most MRI CAs use chelators, macromolecules, or nanoparticles to house gadolinium or iron that is highly paramagnetic with unpaired electrons. The unpaired electronic spins in CA molecules interact with bounded water proton spins, which also interact with surrounding MR-measurable free water proton spins. This interaction among CA and bound and free H2O accelerates the loss of energy and coherence of protons excited by RF, ie, increases the T₁, T₂ relaxation rate (R1,R2). The enhancement effect on R1 measured as percent increase is higher than that on R2, because when unenhanced, R2 > R1. Accordingly, T₁-weighted imaging is routinely performed in contrast-enhanced MRI, including dynamic contrast-enhanced (DCE) MRI for tissue perfusion imaging. CAs also enhance T₂ hypointensity (increases in T₂* rate, R2*) of the intravoxel dephasing because of the strong dipole field of their unpaired electrons. This CA T₂* contrast enhancement is used in dynamic susceptibility contrast (DSC) MRI for tissue perfusion imaging and in tracking cells and other biomedical applications targeted by magnetic nanoparticles.

Clinical Applications Enabled by QSM Biometal Imaging

QSM can be used in all clinical applications of traditional GRE MRI including T₁/C₃, Phase, and SWI. Here, we describe only clinical applications that are enabled by QSM but that are beyond the reach of traditional GRE MRI. Our discussion of clinical applications focuses on using QSM to connect pathogenesis with patient care. There are many diseases for which QSM can be used to measure biometal changes during pathogenesis, progression, and treatment. To illustrate the potential of these clinical applications, we use major cell types, their biometals, and generalizable disease examples. Accordingly, this section is organized into iron in neurons, iron in hepatocytes, iron in macrophages/microglia/Kupffer cells, iron in red blood cells, calcification in bone and apoptotic cells, and biometal contrast agents.

Iron in Neurons: Neurodegenerative Diseases Exemplified by PD

The potential of QSM applications in neurodegenerative diseases can be illustrated with PD. Typically, the motor symptoms that afflict PD patients can be controlled initially by medications for 4–6 years and then later require surgical deep brain stimulation (DBS) (Fig. 6) or an apomorphine pump. Presently, neuroprotective or disease-modifying
therapy, such as iron-chelating therapy (Fig. 7), for PD is not yet available but is under development.

QSM has been actively applied to study the brains of PD patients, demonstrating greater sensitivity than R2* in identifying increased nigral iron in PD patients as compared to healthy controls. The voxel-based morphology analysis by Du et al elegantly demonstrates selective SNc iron increase in perfect concordance with postmortem histology, underscoring the potential of QSM as a biophysical marker for therapeutic effects in clinical trials. While these studies may provide little direct value for current symptomatic levodopa medication of PD patients, QSM could be an essential imaging tool for DBS and iron-chelating therapy. Recently, cortical regions have also shown to be affected by iron accumulation detected by QSM, which is of relevance to the cognitive deterioration that also occurs as a complication as the disorder progresses.

DBS is efficacious in controlling the motor symptoms of advanced PD, including tremors and dyskinesia. By introducing electrodes into the subthalamic nucleus (STN), a small ellipsoid with width/height/depth = 10/7/3 mm, DBS delivers electrical stimuli to excite nearby fibers or disrupt aberrant signaling (Fig. 6). Since the position of the active contact within the STN is the only variable to predict the outcome of STN stimulation, precise targeting of the STN lateral region within 0.5 mm is essential for achieving sufficient DBS efficacy. Given that the STN actively generates glutamine and is therefore rich with iron, using QSM to locate the STN is advantageous because it provides superior contrast-to-noise ratio over other MRI methods, including T2w, T1w, R2*, phase, and SWI (Fig. 8). Therefore, QSM is an ideal technique to accurately and precisely guide electrode placement in DBS treatment for advanced PD patients and other patients with tremor and dystonia. Current promising results strongly argue in favor of additional clinical evaluations across multiple DBS centers to evaluate whether the inclusion of QSM in presurgical MRI (rather than current T2w protocols) can overall improve health outcomes in PD patients undergoing DBS.

A great potential QSM application in patient care is to monitor iron-chelating therapy, which plays a vital role in treating patients with iron overload in the liver, heart, and other organs. Relevant to neurodegenerative diseases is the iron chelator deferiprone (DFP), a small lipophilic molecule that can cross the BBB and enter the substantia nigra. DFP is approved for use with transfusional iron overload, and is currently in clinical trials for treatment of brain iron accumulation disorders such as PD.
Devos et al recently reported very encouraging results showing that DFP improves PD motor performance and reduces nigral R2* values on GRE MRI, suggesting that DFP can be the first disease-modifying therapy for PD.127 Because QSM is superior to R2* for evaluating nigral iron,131,132,134,135,145 an important potential application of QSM in PD is to measure DFP’s effectiveness of target-engagement in clinical trials.

Iron-chelating therapy is being explored to treat other neurodegenerative diseases.146 QSM has been applied to study iron overload in AD,147–149 HD,150 FA,151 and ALS.152 Given the urgent need for developing disease-modifying therapies for neurodegenerative diseases, QSM may facilitate the development of such novel therapeutic agents.

Iron in Macrophages and Microglia: Inflammatory Diseases Exemplified by MS

The potential of QSM applications in inflammatory diseases can be illustrated in MS. Currently, there are several drugs that work to suppress MS inflammation through various mechanisms of action.153 To optimize treatment of MS patients, it is essential to accurately capture CNS inflammatory activity. Current imaging techniques detect accumulation of gadolinium (Gd) in regions of BBB leakage that occur only during acute lesion formation. Unfortunately, the substantial and long-lasting microglial inflammation behind an intact BBB that occurs in established lesions cannot be detected by Gd accumulation.154,155 This limits the ability of the treating physician to assess in MS patients whether CNS inflammation has been successfully stopped, or whether it continues with smoldering, low-grade microglial activation.

QSM has been used to study abnormal iron accumulation in various brain regions in MS, including basal ganglia,156,157 cortical gray matter,158–160 and WM lesions.102,158,161–168 Specifically, the QSM-hyperintense rim of a WM lesion corresponds to iron in proinflammatory activated microglia (102) (Fig. 9). Consequently, WM lesions with rim iron (persistent phase rims169 or hyperintense QSM rim166) sustain more tissue damage than lesions without rim iron. The magnetic susceptibility of WM lesions, and by inference, iron-containing microglia, dynamically evolve in MS patients.161,167 Susceptibility is isointense in enhancing (actively demyelinating) lesions (circle in Fig. 10a), increases sharply after enhancement subsides (early chronic lesions, arrows in Fig. 10a), and then stays constant for an extended period of several years before dissipating into isointense levels (chronic silent lesions). Therefore, QSM provides a wide window into chronic inflammatory activity in established nonenhancing lesions. QSM measurement of chronic inflammation in MS lesions that appear stable on conventional MRI but have a high burden of lesional microglial activation are of significant therapeutic and diagnostic importance. Several compounds that are either FDA-approved (Tecfidera) or under development (Laquinimod170 and Siponimod171 have been shown to impact microglial activation.172,173 QSM can be utilized to monitor these therapies for their ability to mitigate iron accumulation in microglia.

In current standard clinical MS MRI protocols, Gd injection is required to differentiate between active (enhancing) and nonactive (nonenhancing) lesions. Since MS patients undergo regular imaging, repeated Gd injections put them at risk for Gd accumulation in the brain,174,175 this was reported to be associated with degradation into secondary progression.176 Accordingly, an active area of MS MRI research is to eliminate Gd injection and to reduce scan time and cost.177–179 Because of myelin debris formation and removal, and iron accumulation immediately after the BBB seals,166 enhancing lesions are isointense on QSM while nonenhancing lesions are hyperintense on QSM. This enables QSM to accurately predict the status of the BBB without Gd injection168 (Fig. 10b).

Before initiating expensive medication, it is important to differentiate MS from MS mimicking conditions, including neuromyelitis optica spectrum disorder, systemic autoimmune diseases, cerebral small vessel disease, and migraine.180 An
MRI biomarker to differentiate MS from its mimics is the central vein sign (CVS) defined by eliminating TE dependence in T_2^* hypointensity. By providing a universal CVS definition (Fig. 10c), while other features in QSM including the hyperintense rim may also be explored for differentiating MS from MS mimics. QSM may have a broad utility in other disorders characterized by chronic microglial activation such as AD and systemic lupus erythematosus.

Iron in Hepatocytes and Kupffer Cells: Resolve R2/R2* Confounders

Three iron chelating agents, deferoxamine, deferiprone, and deferasirox, are available to treat chronic systemic iron overload. These chelating agents form a complex with iron, promoting its excretion by removing excess iron from cells and clearing plasma nontransferrin-bound iron. Iron-chelating therapy requires careful monitoring of tissue iron concentrations to avoid adverse effects of excessive chelator administration. R2 and R2* methods based on MRI signal magnitude are used for noninvasively evaluating liver and heart iron concentrations. However, their accuracy can be limited by confounding factors, including fat, fibrosis, and edema. Both R2 and R2* depend on intravoxel contents in a very complex manner, making it very difficult to resolve iron content from these confounders. Fortunately, QSM has a simple linear relationship with these intravoxel contents according to chemical decomposition, allowing linear extraction of iron content. Furthermore, except fat (quantifiable according to its chemical shifts and phase data), other intravoxel contents, including fibrosis and edema, have a susceptibility that is virtually zero relative to water, making QSM ideally suited for determining the iron concentration of liver, heart, and other tissues (Fig. 11). Therefore, accurate tissue iron measurement enabled by QSM has enormous potential to play an important role in monitoring iron-chelating therapy of iron overload.

Iron in RBCs: Oxygen Consumption and Hemorrhage

We first use the brain as an example for using QSM to study oxygen consumption. The ability to perform noninvasive CMRO2 mapping could improve our ability to manage a variety of neurological disorders. For example, the small fraction (<10%) of stroke patients undergoing treatment may be increased following identification of salvageable ischemic penumbra and irreversibly damaged core; this is unfortunately not possible with current cerebral blood flow (CBF) diffusion-weighted imaging, and oxygen...
FIGURE 10: (a) Iron rim on in vivo QSM. (left) T_2-weighted image (T_2w), (center) QSM, and (right) T_1-weighted image with gadolinium injection (T_1w+Gd) of a relapse remitting MS patient. Hyperintense rim on QSM that can be biophysically interpreted as iron is seen on Gd nonenhancing lesions (arrows in center), indicating active chronic inflammation. QSM isointense lesion is Gd enhancing (circles), suggesting the QSM value is anticorrelated to Gd enhancement. (b) QSM allows accurate assessment of MS lesion enhancement status without Gd injection. QSM isointense predicts Gd-enhancing and QSM hyperintense predicts Gd non-enhancing with an area under the receiver operating characteristic curve of 0.96. (From https://www.ncbi.nlm.nih.gov/pubmed/27365331.) (c) QSM is ideal to depict the central veins in MS lesions (arrows), while T_2w cannot depict the central veins, and T_2w cannot or only very poorly depict the lesions.
extraction fraction (OEF).192 \(CMRO_2\) (=\(\text{CBF}^*\text{[dH]}\), assuming fully oxygenated arterial blood; \([\text{dH}]\) denotes \([\text{dH}]\) concentration)193 promises to define the ischemic penumbra-core by providing a direct measure of cell metabolism that consistently predicts neuronal death.194–196 Current \(CMRO_2\) mapping techniques are too cumbersome to be used even in research, including 1) positron emission tomography (PET) with \(^{15}\text{O}\) of a very short 2-minute half-life197; 2) QUIXOTIC MRI with problematic flow capture, poor sensitivity, and arterial and CSF contamination198,199; 3) quantitative BOLD MRI with model errors and poorly conditioned inversion200,201; and 4) calibrated fMRI with model errors and two vascular challenges.202–205 Calibrated fMRI has been attempted by several groups, and QSM can simplify its application while eliminating its empirical assumptions. Tissue susceptibility measured on QSM is linearly related to \([\text{dH}];\) in contrast, the \(R_{2^*}[\text{dH}]\) model in calibrated fMRI is nonlinear and empirical with extra parameters of unclear physical origins.205 QSM-based \(CMRO_2\) mapping can be performed using a simple vascular challenge such as hyperventilation206 (Fig. 12). It may be viable to develop challenge-free \(CMRO_2\) mapping by optimally utilizing both MRI signal and biological priors.207 This is fertile ground for technology development of \(CMRO_2\) mapping and clinical investigations enabled by practical \(CMRO_2\) techniques.

The very high susceptibility of ICH presents an opportunity to further develop QSM.208–211 QSM has been used to study intracerebral hemorrhage, including measurement of hematoma volume,212 differentiation from calcification,18,213,214 and dating of cerebral cavernous malformation lesions.215 Preventing hematoma growth is an important goal in improving patient outcomes as well as an important endpoint in clinical trials focused on the treatment of acute ICH.216 By overcoming blooming artifacts, QSM can be used to measure hematoma volume as accurately as computed tomography (CT), while providing MRI benefits of assessing tissue damage. Treatments to minimize neuron damage from ICH are under development and include iron-chelating therapy.217 QSM would be an ideal method for evaluating iron levels in emerging ICH therapies.

QSM can also be used to measure the burden of cerebral microbleeds (CMB),218 which is a strong and independent risk factor for anticoagulant-associated ICH.219 In general, the long-term clinical risks and management in patients with microbleeds have yet to be defined. This remains an active area of investigation, where QSM can play an important role, particularly in longitudinal studies of microbleed burden.220

QSM can also be applied to circulation.221 Chamber blood oxygenation, which is evaluated in deciding surgery for intracardiac shunt in congenital heart disorders,50 may be directly quantified by QSM, avoiding invasive oximetry. QSM may be developed to quantify intramyocardial hemorrhage (IMH), which often follows revascularization of myocardial ischemia222 and shares features with hemorrhagic transform in ICH.223
Iron Deficiency
Lastly, QSM can be used to study brain iron deficiency in children, in adults with restless leg syndrome, and, potentially, to detect iron deficiency in the bone marrow, liver and other organs. Restless leg syndrome (RLS; Willis-Ekbom disease), characterized by an irresistible urge to move the legs, is a neurosensorimotor disorder associated with iron deficiency, with iron levels decreased in the substantia nigra, thalamus, putamen, and pallidum. QSM may offer a new reference means for noninvasive detection of iron deficiency that can avoid the confounding effects of inflammation, infection, and malignancy on currently available biomarkers.

Bone Mineralization and Pathologic Calcification
Osteoporosis can be treated through medications, including antiresorptive agents (biophosphonates) and anabolic agents that slow down disease progression and reduce fracture risk. Osteoporosis is diagnosed on measurements of bone mineral density (BMD) using dual energy x-ray absorptiometry (DXA) and quantitative computed tomography (QCT). 3D QCT is superior to 2D DXA in measuring trabecular and spinal bones that are more sensitive to therapy. However, QCT is limited in usage, because of its much higher radiation dose than DXA. This problem can be solved by the latest development of bone QSM which tomographically quantifies calcium without radiation (Fig. 13). Because of the widespread use of bone mineral densitometry as a screening tool for osteoporosis, there is the potential for significant public health benefit if the radiation dose is minimized by using MRI QSM instead of X-rays.

QSM has been used to study calcification in tumors and to resolve hemorrhage from calcification; their distinction mapped on QSM may indicate tumor malignancy. QSM of arterial calcification could have an emerging role in quantifying calcification in arterial beds, including in the coronary arteries, where calcium scores have been shown to be a highly predictive measure of overall cardiovascular risk. Among patients with significant plaques, using QSM to differentiate calcium from hemorrhage may great clinical impact because intraplaque hemorrhage is a potential trigger of plaque vulnerability while calcification may be an indicator for plaque stability.

CA Biodistribution
Historically, QSM started with the curiosity to quantify Gd in contrast-enhanced MR angiography from the change in
the phase images that were and still are discarded in routine MRI. In current clinical MRI, CA biodistribution quantification for mapping tissue perfusion is obtained by assuming that CA concentration ([CA]) is linearly proportional to signal change in DCE or DSC MRI. This assumption may break down in tumors where [CA] is elevated due to highly active angiogenesis. In general, absolute quantification of [CA] according to its T_1/T_2 effects requires calibration, is susceptible to flip angle errors, and relies on the problematic empirical assumption that the change in the T_1/T_2 relaxation rate is linearly proportional to [CA]. The linearity assumption requires sufficient availability of bulk water, which is not true for localized CAs with limited access to water, as demonstrated in the well-known T_1/T_2 relaxation quench in molecular MRI. T_2^* hypointensity or R2* is notoriously difficult to quantify and suffers from saturation and blooming artifacts. QSM can overcome these problems associated with R1, R2, and R2* for [CA] quantification. In QSM, the CA susceptibility field is measured by its neighboring water, without requiring water contact, thus overcoming the quench problem. QSM also overcomes the R2* saturation problem using distant water, and of course overcomes R2* blooming artifacts through deconvolution. QSM may play an important role for quantifying drug biodistribution, with major potential implications for improving drug delivery.

Summary

In this clinical QSM review, we have described QSM as a robust and automated technique to image disease-related biometals with strong susceptibility values, especially iron and calcium. As examples of applications related to iron in neurons, QSM provides excellent definition of the subthalamic nuclei to accurately guide deep brain stimulation in patients suffering from Parkinson's disease. QSM holds great promise for monitoring iron-chelating therapy, which is used in treating iron overload in the liver, heart, and other tissues and is actively being investigated for treating neurodegenerative diseases with iron overload and hemorrhagic stroke of devastating morbidity. Furthermore, QSM is poised to play a key role in measuring iron-associated inflammation in multiple sclerosis, and in overcoming limitations in current gadolinium-dependent MRI protocols. Intravascularly, QSM offers the potential of simple yet robust, noninvasive, challenge-free oxygen consumption measurements, whose further development could significantly impact the imaging strategies of a wide range of diseases, including ischemic stroke and Alzheimer’s disease. Finally, QSM has the potential to map mineralization for measuring bone strength, and for monitoring drug biodistribution delivered by nanocarriers containing magnetic cores.

In conclusion, we believe that clinicians should consider integrating QSM into their routine imaging practices by including gradient echo sequences with automatic preservation of both phase and magnitude data in all relevant MRI protocols.

Acknowledgments

Contract grant sponsor: NIH; contract grant numbers: R01CA181566, R01NS072370, R01NS090464, and R01NS095562

References

1. de Rochefort L, Liu T, Kessler B, et al. Quantitative susceptibility map reconstruction from MR phase data using Bayesian regularization:

