Biodegradation of hydrocarbon mixtures in surface waters at environmentally relevant levels – Effect of inoculum origin on kinetics and sequence of degradation

Heidi Birch a,*, Rikke Hamershøj a, Mike Comber b, Philipp Mayer a

a Technical University of Denmark, Department of Environmental Engineering, Building 115, 2800 Kgs. Lyngby, Denmark
b Mike Comber Consulting, Bridford, Exeter, UK

HIGHLIGHTS

- Biodegradation of a mix of 9 hydrocarbons measured in five surface water samples.
- Passive dosing was used for preparation of low concentration test systems.
- Higher urbanization and/or bacterial density increased 1. order rate constants.
- Sequence of degradation of the hydrocarbons (HC) was consistent among five inocula.
- Half-times were less or within a factor of 10 from BioHCwin predictions for 8 HCs.

Article info

Article history:
Received 8 March 2017
Received in revised form 24 May 2017
Accepted 29 May 2017
Available online 2 June 2017
Handling Editor: Keith Maruya

Keywords:
Biodegradation kinetics
Volatile petroleum hydrocarbons
Composed mixtures
SPME
Passive dosing

Abstract

Biodegradation is a dominant removal process for many organic pollutants, and biodegradation tests serve as tools for assessing their environmental fate within regulatory risk assessment. In simulation tests, the inoculum is not standardized, varying in microbial quantity and quality, thereby potentially impacting the observed biodegradation kinetics. In this study we investigated the effect of inoculum origin on the biodegradation kinetics of hydrocarbons for five inocula from surface waters varying in urbanization and thus expected pre-exposure to petroleum hydrocarbons. A new biodegradation method for testing mixtures of hydrophobic chemicals at trace concentrations was demonstrated: Aqueous solutions containing 9 hydrocarbons were generated by passive dosing and diluted with surface water resulting in test systems containing native microorganisms exposed to test substances at ng·mL/L levels. Automated Headspace Solid Phase Microextraction coupled to GC-MS was applied directly to these test systems to determine substrate depletion relative to abiotic controls. Lag phases were generally less than 8 days. First order rate constants were within one order of magnitude for each hydrocarbon in four of the five waters but lower in water from a rural lake. The sequence of degradation between the 9 hydrocarbons showed similar patterns in the five waters indicating the potential for using selected hydrocarbons for benchmarking between biodegradation tests. Degradation half-times were shorter than or within one order of magnitude of BioHCwin predictions for 8 of 9 hydrocarbons. These results showed...
that location choice is important for biodegradation kinetics and can provide a relevant input to aquatic exposure and fate models.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Biodegradation is a dominant removal process for many organic pollutants in the aquatic environment, and quantitative knowledge and data on biodegradation kinetics are therefore needed in water research, environmental risk assessment and aquatic fate models. Petroleum products are complex mixtures of varying composition consisting of a large number of chemical structures and degraded by equally complex microbial communities in the environment (Abbasian et al., 2015; Hazen et al., 2016; Head et al., 2006; Van Hamme et al., 2003). Experimental biodegradation data are not available for most of the constituents of petroleum products. Therefore a biodegradation prediction model (BioHCwin) has been developed (Howard et al., 2005) and shown to perform well for classifying persistence conservatively (Prosser et al., 2016). However, there is a lack of high-quality experimental kinetic data useful for optimization of this and other prediction models (Rücker and Küppermer, 2012).

Suitable testing methods are important for generating high-quality experimental data at environmentally realistic concentrations (Prince et al., 2017). Most of the constituents in petroleum products are hydrophobic and have very low solubilities. Passive dosing from a silicone polymer has earlier been used to improve and simplify test methods for hydrophobic organic chemicals in toxicity tests (Smith et al., 2010) and distribution measurements (Birch et al., 2012) by producing stable concentrations of freely dissolved chemicals and avoiding the use of solvents in the test systems. Passive dosing has also been introduced for biodegradation tests of single chemicals (Smith et al., 2012) and mixtures (Comber et al., 2012). In this study we designed and included a passive dosing method in biodegradation tests to investigate mixtures composed of potential petroleum hydrocarbons at environmentally relevant concentrations, 2–4 orders of magnitude below the solubility of the test chemicals.

Although the physical and chemical test conditions which can affect biodegradation (Leahy and Colwell, 1990) are largely standardized in tests such as the OECD test series (OECD 301, 1992; OECD 303, 2001; OECD 306, 1992; OECD 309, 2004), the biological conditions of the inoculum is poorly defined and variable with respect to cell density, species, origin and history of the sample (Kowalczyk et al., 2015; Thouand et al., 2011). Pre-exposure to the tested chemical or similar chemical structures has been seen to enhance degradation by adaptation of the microbial community (Bauer and Capone, 1988; Leahy and Colwell, 1990; Marchal et al., 2003), and lag phases have been seen to depend on cell density in tests (Caparello and Larock, 1975), pre-adaptation of inoculum (Toräng and Nyholm, 2005) and total amount of specifically degrading bacteria (Ingerslev et al., 2000). Previous studies reported the difference in biodegraded percentages of gasoline, diesel oil, crude oil and kerosene in soil samples (Hamamura et al., 2013; Marchal et al., 2003), hexadecane in surface water samples (Caparello and Larock, 1975), crude oil constituents in sea water (Kristensen et al., 2015), diesel and lubricating oil in sediments (Powell et al., 2007) and selected hydrocarbons in water-sediment mixtures from lakes (Cooney et al., 1985). A concept has been proposed recently to target the environmental microbial variability from a probability perspective in which 10 different inocula are used in ready biodegradability tests to evaluate the probability of biodegradation in the environment (Thouand et al., 2011). However, the kinetics of the biodegradation was not targeted in the above mentioned studies. Given that diverse microbial communities of hydrocarbon degraders are generally present in the aquatic environment (Hazen et al., 2016; Van Hamme et al., 2003), the lag phase, being the time during which the bacteria adjust to the substrate and multiply, is potentially the main parameter influenced by pre-exposure of the inoculum. Once degradation is initiated, the rates could therefore be similar and independent of the level of pre-exposure of the sampling locations. The aim of this study was therefore to investigate the effect of the inoculum origin on biodegradation kinetics. The surface water sampling locations were thus selected to represent different degrees of pre-exposure to petroleum hydrocarbons. Pre-exposure to petroleum hydrocarbons was assumed for locations receiving rainwater runoff discharges (Göbel et al., 2007). Locations ranging from rural locations with no known point sources to urban locations receiving rainwater runoff discharges were selected based on point source information from the Danish river basin management plans (The Danish Nature Agency, 2011a, 2011b). We tested the degradation in natural surface water samples without addition of sediment to ensure a high bioavailable fraction and corrected for partitioning to headspace (Birch et al., 2017).

For petroleum hydrocarbons, a general sequence of susceptibility towards biodegradation has been reported as n-alkanes > iso-alkanes > low-molecular weight aromatics > cyclic alkanes > PAHs, although exceptions are seen (Leahy and Colwell, 1990). This sequence has also been observed in the field, where after oil spills, the abundance of specialist alkane degraders generally show a bloom followed by a bloom of specialist aromatic hydrocarbon degraders (Head et al., 2006). A further aim of the study was therefore to determine whether the sequence in which the hydrocarbons were degraded remained the same across the sites. If this was the case, then the design would not only facilitate comparisons of biodegradation results from different water sampling locations but also provide a new basis for extrapolating biodegradation results.

The focus of this study was therefore to see whether (1) using water from locations with higher urbanization would result in shorter lag phases in the biodegradation test compared to locations with less urbanization, (2) biodegradation rate constants would be less affected than lag phases by the sampling location and (3) the sequence of degradation of the hydrocarbons would be consistent across different locations. Additionally, we compared the obtained biodegradation kinetic data from the present study to BioHCwin predictions.

2. Materials and methods

2.1. Materials

Test chemicals included potential petroleum hydrocarbons with 8–12 carbon atoms: n-decane, tetralin, biphenyl, trans-decalin, bicyclohexyl, 1,2,4-trimethylbenzene (tmbenzene) and naphthalene (Sigma-Aldrich, Copenhagen, Denmark, purity ≥ 98%), 2,3-dimethylheptane (dmheptane) and 1,3,5-trimethylcyclohexane.
(trimethylcyclohexane) (TCI chemicals, Zwijndrecht, Belgium, purity ≥ 98%). 1-Octanol (Sigma-Aldrich, Copenhagen, Denmark, ≥ 99%) was used as a reference chemical (positive reference for microbial activity in the test). Passive dosing systems were prepared using translucent silicone rods (custom-made by Altec Products Ltd., Victoria, UK, product code 136–8380) in 100 mL amber Wheaton glass serum bottles with crimp seals and PTFE-coated silicone septa. Ethyl acetate (Sigma-Aldrich, Copenhagen, Denmark, ≥99.7%) and ethanol (VVR chemicals, Søborg, Denmark, 99.8%) were used for cleaning of silicone rods. LaboStar™ 1-DI ultrapure water system from SGwater (Hamburg, Germany) was used to produce ultrapure water.

2.2. Generating stock solution by accelerated passive dosing

Silicone rods were cleaned, loaded with test chemicals and equilibrated with ultrapure water to produce a stable and reproducible low concentration stock solution for the biodegradation tests. The cleaning procedure included washing three 20 g silicone rods (diameter: 3 mm, approx. length: 2.6 m) in a dishwasher tests. The cleaning procedure included washing three 20 g silicone rods (diameter: 3 mm, approx. length: 2.6 m) in a dishwasher without the use of cleaning agents, soaking in ethyl acetate for 24 h, rods (diameter: 3 mm, approx. length: 2.6 m) in a dishwasher and ultrapure water to produce a stable and reproducible low concentration stock solution for the biodegradation tests. The resulting stock solution was diluted 10 times when prepared for all test chemicals prior to the biodegradation experiments. HS-SPME sampling was done for 10 min at 35 °C directly in the 20 mL test systems using a 100 µm PDMS fiber (SUPELCO, Bellefonte) with shaking at 250 rpm alternating 5 s on and 2 s off. Desorption was performed at 250 °C in the injection port using a 2:1 split for 3 min followed by a 33:1 split for 2 min. Separation was achieved on a 30 m DB-1ms column of 0.25 mm inner diameter and 0.25 µm film thickness using Helium as carrier gas at 1.2 mL/min. Oven temperature was 35 °C for 6 min followed by a ramp of 15 °C/min to 300 °C. The GC signal was split between the MS and a FID, however, only the MS signal was used. Transfer line temperature was 270 °C and the MS was run in SIM mode using a quantifier and qualifier ion for each chemical. The method was operational down to typically 10 ng/L concentrations, depending on the properties of the chemicals.

2.3. Surface water inocula

Five surface water grab samples, collected from three Danish streams and two Danish freshwater lakes, were used as inocula (Supporting Information S1). Samples were collected from the 12th to 21st October 2015 and used within 24 h after collection. A description of the locations can be seen in Table 1. Temperature, pH, dissolved oxygen and conductivity were measured immediately after sampling using portable meters. Indicative levels of nitrate, ortho-phosphate and ammonium were measured with manufactured test kits from Merck Millipore. Initial bacterial density was measured as heterotrophic plate counts using a non-selective agar (Fluka® Analytical 17209 R-2A agar) within 24 h of sampling. H2PO4 was added to a sub-sample from each location (to conserve the sample at pH 2) and nonvolatile organic carbon (NVOC) was measured on a Shimadzu Total Organic Carbon Analyzer TOC-Vcp. Background concentrations of test chemicals were below detection limits in all surface waters.

2.4. Biodegradation testing

The biodegradation experiments were designed to measure biodegradation by substrate depletion in test systems relative to abiotic controls. Each biodegradation experiment was therefore composed of a series of test systems and an equal number of abiotic systems that were incubated in parallel. All systems were prepared in 20 mL amber glass vials closed with screw caps and PTFE-coated silicone septa. To prepare the test systems, 1.5 mL stock solution was diluted 10 times into surface water spiked with 30 µg/L of 1-octanol. Abiotic systems were prepared with ultrapure water instead of surface water. Blank controls were included. The test- and abiotic systems were incubated at 20 °C on a bench top laboratory roller at a rate of 30 rpm. At different time points (e.g. day 0, 1, 2, 3, 4, 5, 7, 10, 14, 21, 28 and 56) triplicate test systems, triplicate abiotic systems and a blank control were sacrificed for chemical analysis.

2.5. Chemical analysis

Automated Headspace Solid Phase Micro Extraction (HS-SPME) (PAL RSI 85 auto sampler) coupled to Gas Chromatography – Mass Spectrometry (GC-MS) (Agilent Technologies 7890B/5877A GC/MSD) was applied to measure the 9 hydrocarbons. Rather than measuring on sub-samples of the test system, automated HS-SPME was applied directly to test systems and abiotic controls to optimize the measurements, minimize losses and minimize the risk for contaminations. HS-SPME sampling was done for 10 min at 35 °C directly in the 20 mL test systems using a 100 µm PDMS fiber (SUPELCO, Bellefonte) with shaking at 250 rpm alternating 5 s on and 2 s off. Desorption was performed at 250 °C in the injection port using a 2:1 split for 3 min followed by a 33:1 split for 2 min. Separation was done on a 30 m DB-1ms column of 0.25 mm inner diameter and 0.25 µm film thickness using Helium as carrier gas at 1.2 mL/min. Oven temperature was 35 °C for 6 min followed by a ramp of 15 °C/min to 300 °C. The GC signal was split between the MS and a FID, however, only the MS signal was used. Transfer line temperature was 270 °C and the MS was run in SIM mode using a quantifier and qualifier ion for each chemical. The method was operational down to typically 10 ng/L concentrations, depending on the properties of the chemicals.

2.6. Data analysis

Aqueous standard solutions were used to determine the initial concentration level in the experiments. For the rest of the experiment, biotic test systems were always referenced against abiotic test systems: The measurement of each biotic test system was normalized by the mean of the three abiotic controls that were measured on the same GC-run. This yielded the relative response R for each biotic test system, which was plotted as a function of incubation time and fitted to a first order degradation model with lag phase (Equation (1)) using no weighting and considering each replicate as an individual point in GraphPad Prism 5.00.

\[
R = \begin{cases}
R_0, & \text{if } t < t_{\text{lag}} \\
R_0 \exp(-k_{\text{system}}(t - t_{\text{lag}})), & \text{if } t > t_{\text{lag}}
\end{cases}
\]

(1)

\(R_0\) is the relative response at time 0, \(t\) is the incubation time (days), \(t_{\text{lag}}\) is the lag phase (days) and \(k_{\text{system}}\) is the first order degradation rate constant of the test system (days⁻¹). Additional to the kinetic model, the 10% degradation time, \(DT_{0.1}\) and the degradation half-time, \(DT_{50}\), which describe the time at which 10% and 50% of the test chemical was degraded in the test, respectively, was found by Equations (2) and (3).
As described in Birch et al. (2017) some of the chemicals distribute into the headspace. The first order water phase degradation rate constant, k_{water}, was calculated using the dimensionless Henry's laws constant, K_H^*, volume of water, V_w, and headspace, V_h, in the test system according to Equation (4) (Birch et al., 2017). The K_H^* and fraction in headspace are shown in Supporting Information (S3).

$$k_{water} = k_{system} \cdot \frac{V_w + K_H^* \cdot V_h}{V_w}$$

3. Results and discussion

3.1. Surface water sample characteristics

The reference compound, 1-octanol, was added to demonstrate the microbial activity of the inocula (positive reference), and were degraded within one day in all five inocula.

Bacterial densities (heterotrophic plate counts) were higher in the streams than in the lakes, and the urban lake and stream had higher densities than the rural lake and stream respectively (rural lake: 1.4×10^3 CFU/mL, urban lake: 4.6×10^3 CFU/mL, rural stream: 1.2×10^4, wastewater treatment plant (WWTP) impacted stream: 1.5×10^4, urban stream: 8.0×10^4 CFU/mL). The differences are probably caused by the regular discharges of organic matter into urban streams compared to rural streams. The bacterial densities are in the same range as the number of cells recommended in the standard OECD test guideline 'ready biodegradability' (OECD 301, 1992).

The legends in Figs. 1–3 are ordered from the highest to lowest bacterial densities. The five surface water samples had a pH between 7.7 and 8.0, organic carbon (NVOC) of 6–10 mg/L and temperatures between 8 and 11°C (see Supporting Information S2). These parameters were thus quite similar between test locations. Earlier studies have shown that uncharacterized dissolved organic carbon in test systems leads to higher degradation rates and shortening of the acclimatization phase of microorganisms (Kovarova-Kovar and Egli, 1998). However, because the amount of NVOC is similar in the investigated surface waters, this parameter is not considered to be important for the differences in biodegradation in this study.

The sample from the WWTP impacted stream showed slightly elevated concentrations of phosphate and nitrate (1.8 mg/L NO$_3^-$ and 0.14 mg/L PO$_4^{3-}$) compared to the level in the other samples (0.7–1.0 mg/L NO$_3^-$ and 0.01–0.06 mg/L PO$_4^{3-}$). These nutrient levels are sufficient for the total degradation of the test chemicals, which were added in the ng–µg/L concentration level.

3.2. Biodegradation

Fig. 1 shows the fit of the first order degradation model with lag phase to biodegradation data for n-decane, biphenyl and trans-decalin. n-Decane is an example of a chemical which was quickly...
degraded in water from all test locations. Biphenyl was, similar to the other aromatic chemicals, quickly degraded after a lag-phase. **trans-Decalin** is an example of a chemical with a slower degradation. Degradation curves for the remaining chemicals are shown in Supporting Information (S4).

1,3,5-trimethylcyclohexane was the least degraded of the nine tested hydrocarbons. In the urban stream sample degradation started after 8 days, and it was degraded according to 0th order kinetics after day 18 in the WWTP impacted stream. However, no degradation of 1,3,5-trimethylcyclohexane was seen in the two lake samples, and degradation was only detected in two test systems in the rural stream sample (one of three on day 14 and day 56). An explanation for the absence of biodegradation in some of the samples could be that only less abundant specific degraders are able to degrade this hydrocarbon. The higher microbial population in the urban stream and WWTP impacted stream would then increase the probability of such degraders to be present in the test systems (Thouand et al., 2011). The fact that 1,3,5-trimethylbenzene was degraded in two test systems from the rural stream, which had the third highest bacterial density, supports this explanation. The higher pre-exposure in the WWTP impacted stream and the urban stream compared to the other samples, would further increase the probability of specific degraders to be present in these samples. This structure is less susceptible to microbial degradation than the other eight hydrocarbons tested in this experiment.

3.3. Surface water origin effect on lag phase

Lag phases were between <1 day and 8 days for eight of the nine tested hydrocarbons (see Fig. 2). In samples from all five locations very short lag phases (<2 days) were observed for \(n \)-decane and bicyclohexyl, which have the lowest aqueous solubilities and were added at very low concentration levels (<1 \(\mu \)g/L). This absence of lag phase shows that bacterial growth and adaptation was not needed for initiating the biodegradation of these two compounds and that microbial populations capable of degrading these two chemicals were widely present in the surface waters in numbers sufficient for degradation at low concentrations levels.

Microbial activity and pre-exposure can affect lag phases. These two factors are, however, not independent because pre-exposure can lead to higher microbial activity and because of the likely correlation between pre-exposure and other anthropogenic pollution parameters such as eutrophication and input of microorganisms. The streams with higher urbanization were found to have higher bacterial densities. The microbial population in the urban stream is considered extensively pre-exposed to petroleum hydrocarbons because it receives stormwater runoff discharges (occasionally thin oil films are visible despite treatment in oil separators before discharge to the stream), and the WWTP impacted stream is considered medium pre-exposed to petroleum hydrocarbons since most hydrocarbons are removed in the treatment plant before discharge, but bacteria from the treatment plant are discharged with the effluent. Generally shorter lag-phases were seen in the urban stream than in the WWTP impacted stream and rural stream. This can be attributed to an effect of either the pre-exposure or the higher bacterial density in the samples.

The only comparison in which pre-exposure can be separated from bacterial density is the rural stream, which had a higher heterotrophic plate count than the more pre-exposed urban lake. The sample from the urban lake showed shorter lag phases than the sample from the rural stream for 4 of the chemicals and overlapping confidence limits for two chemicals even though the initial bacterial density was lower. This finding indicates that higher pre-exposure of test locations shortened the biodegradation lag phase compared to less pre-exposed locations, although only one pair of test locations could be used for this comparison.

For most of the chemicals, confidence limits for the lag phase were much wider in the sample from the rural lake than in the remaining samples. The reason for the wide confidence limits for the lag phase in the rural lake is the lower degradation rates observed in the rural lake (see Fig. 1), which makes it difficult to determine the length of the lag phase with high accuracy and precision. An alternative method to find lag-phases is to determine the 10% degradation time, \(DT_{10} \) (see Equation (2)), the time at which the concentration is 90% of the initial concentration in the test systems. This method will primarily affect determination of lag phases if the degradation is slow, and in this case primarily the rural lake. The \(DT_{10} \) for the rural lake was between 5 and 10 days for the degraded chemicals except the fast degrading \(n \)-decane and bicyclohexyl, and thus decalin did not show a shorter lag-phase in the rural lake than in water from the other sites.

3.4. Comparison to BioHCwin predictions and sequence of degradation

Degradation half-times (lag phase + one first order half-life) and BioHCwin half-life predictions for the test chemicals are shown in Fig. 3 (and listed in Supporting Information S5). For four of the chemicals, the BioHCwin predicted half-lives were higher than the observed degradation half-times in all five surface waters. For four chemicals, the BioHCwin predictions were within the range of observed half-times. For 1,3,5-trimethylcyclohexane, all the observed degradation half-times were longer than the BioHCwin prediction. The measured degradation half-times were thus shorter than the BioHCwin predictions. This can be attributed to a lag-phase that was not found in the BioHCwin predictions.
or within one order of magnitude of the BioHCwin predictions for 8 of 9 tested chemicals.

A preferential sequence of degradation of PAHs has earlier been observed using single strains or a mixed bacterial culture (Leblond et al., 2001; Wammer and Peters, 2005). However, it has also been found that in systems in which carbon sources are restricted and available as many different compounds at low concentrations, heterotrophic organisms do not utilize only one carbon source, but assimilate many compounds simultaneously (Kovarova-Kovar and Egli, 1998). The sequence of degradation of test chemicals was in this study largely conserved between the five surface water locations as illustrated in Fig. 3. n-decane and bicyclohexyl were degraded first, then 2,3-dimethylheptane and the four aromatic test chemicals were degraded simultaneously, then trans-decalin and lastly 1,3,5-trimethylcyclohexane (if degraded at all). Overall, the general sequence of degradability of hydrocarbons, n-alkanes > iso-alkanes > low-molecular weight aromatics > cyclic alkanes (Leahy and Colwell, 1990), was therefore seen to describe the degradation in this experiment well. The exception was the cyclic alkane bicyclohexyl, which was degraded before the low-molecular weight aromatics. However, as will be discussed further below, the degradation rate constant of trans-decalin and 1,3,5-trimethylcyclohexane is notably influenced by the test system dimensions, and these chemicals have a shorter half-life in the water phase than in the test system (Birch et al., 2017). The BioHCwin predictions did however not predict the same sequence of degradation.

The finding that the overall sequence of degradation was consistent in the samples from the different locations opens the possibility for using benchmark chemicals in biodegradation testing. If a benchmark chemical is included in a number of biodegradation studies it could then be used to relate or rank the biodegradation capabilities of the inocula relative to each other. Furthermore, it could possibly be used to estimate the degradation of a test chemical at one test location where only benchmark chemical degradation was measured using data from another location where both the benchmark and test chemical degradation were measured. In this way, kinetic data from different biodegradation experiments could be compared even though the tests used inocula from different locations. This approach would however be based upon the assumption that the factors that influence the degradation of one chemical would change the degradation of another chemical in the same manner, and that there would be no significant mixture effects on the degradation kinetics. Considering pre-exposure as such a factor, the test chemical and benchmark chemical would have to have similar exposure routes for locations to be pre-exposed to the chemicals to the same degree. This is a more reasonable assumption for chemicals which are emitted as single substances (e.g., pesticides). More work needs to be done, to reveal the potential and limitations of the use of benchmark chemicals in biodegradation testing of hydrocarbons.

3.5. Surface water origin effect on first order rate constants

Test system and water phase first order degradation rate constants for the five surface waters are shown in Fig. 4.

Contrary to our expectations, the biodegradation rate constants were affected to the same extent as the lag phases by the changes in the urbanization of the sampling locations. The rate constants found in samples from four of the test locations spanned approximately one order of magnitude, while lower rate constants were found for the rural lake sample. Generally, the rate constants were highest in the urban stream samples and lowest in water from the rural lake. For five of the chemicals the degradation rate constants were higher in the urban lake sample, which had a lower initial bacterial density, than in the rural stream sample, for two chemicals confidence limits overlapped, and for one chemical the rate was higher in the rural stream sample.

When the test system rate constants were corrected for partitioning to headspace in order to determine the water phase rate constants (Fig. 3 right), the three first (n-decane, bicyclohexyl and 2,3-dimethylheptane) and two last chemicals (trans-decalin and 1,3,5-trimethylcyclohexane) on the x-axis of Fig. 4 were mainly affected. This correction revealed that the main reason for a slower degradation of trans-decalin was the headspace partitioning. The water phase rate constants for all tested chemicals in the sample from the urban stream were above 1 d⁻¹.

The difference in biodegradation rates found here shows that choice of inoculum location can be an important consideration for biodegradation testing and can influence biodegradation kinetics. The results show that a rural location without surface water runoff discharges can reveal conservative biodegradation rates. However since these types of locations are not representative of most surface waters, other locations can be more appropriate as input to aquatic exposure and fate models. Independent of the type of location, this study can be used as input to quantify the uncertainty associated with biodegradation kinetic data employed in fate and exposure models.

3.6. Extrapolation from test to environment

Simulation biodegradation testing should ideally be conducted at environmentally realistic conditions in order to obtain data which can be extrapolated to the environment. The focus and emphasis in the present study was to improve environmental realism by testing of (1) composed mixtures rather than single compounds, (2) at environmentally relevant low concentrations (ng/L – μg/L) and (3) by populations of native microorganisms from the different locations. Other factors and aspects were not (yet) environmentally realistic: The tests were conducted at a temperature of 20 °C, which is higher than at the sites from where the samples were taken and can lead to an underestimation of lag phases and half-lives. The tests were also conducted in closed systems of 15 mL, which implies a rather limited population of microorganisms and an even more limited population of metabolic potent microorganisms, which can lead to an overestimation of lag phases and half-lives. The latter is particularly critical for surface waters with limited pre-exposure and low bacterial density, where the presence of a sufficient amount of specific degraders may not be ensured in all test systems. This might be part of the explanation for the markedly longer lag-phases and lower degradation rates for several compounds in inoculum from the rural lake.

![Figure 3](https://example.com/figure3.png)

Fig. 3. Degradation half-times (lag phase + one half-life) of test chemicals in surface water from five locations and BioHCwin predictions.
4. Conclusions

Measurements of the degradation of nine petroleum hydrocarbons in water from five diverse sampling locations, showed biodegradation rate constants ranging a factor 10 for each chemical in water from four of the five locations. Lag phases were comparable but generally slightly shorter in tests with inocula from urban locations compared to rural locations. The first order degradation rate constants were also lower in water from locations with low initial bacterial density and low urbanization. Although biodegradation kinetics were influenced by differences in the level of urbanization of inoculum locations, the sequence of degradation was quite consistent among the five locations. The experiments thus show the importance of the choice of sampling location for biodegradation tests, and open the possibility of using benchmark chemicals in biodegradation testing of hydrocarbons.

The study showed the added value of combining partitioning based methods (passive dosing and HS-SPME) with GC-MS analysis for testing biodegradation of mixtures of hydrophobic chemicals with low water solubility to produce biodegradation kinetic data of high technical quality and at environmentally relevant concentrations.

Acknowledgements

This work was supported by Concawe. The authors thank Hanne Bøggild for technical assistance in the laboratory and Eleni Vaiopoulos and the Concawe Ecology Group for comments on the draft manuscript.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.chemosphere.2017.05.169.

References

学霸图书馆

www.xuebalib.com

本文献由“学霸图书馆-文献云下载”收集自网络，仅供学习交流使用。

学霸图书馆（www.xuebalib.com）是一个“整合众多图书馆数据库资源，提供一站式文献检索和下载服务”的24小时在线不限IP图书馆。

图书馆致力于便利、促进学习与科研，提供最强文献下载服务。

图书馆导航：
图书馆首页 文献云下载 图书馆入口 外文数据库大全 疑难文献辅助工具