Clinical and Genomic Characterization of Siblings With a Distal Duplication of Chromosome 9q (9q34.1-qter)

Seiji Mizuno, 1* Daisuke Fukushi, 2 Reiko Kimura, 2 Kenichiro Yamada, 2 Yasukazu Yamada, 2 Toshiyuki Kumagai, 3 and Nobuaki Wakamatsu 2

1Department of Clinical Genetics, Central Hospital, Aichi Human Service Center, Kasugai, Japan
2Department of Genetics, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
3Department of Pediatric Neurology, Central Hospital, Aichi Human Service Center, Kasugai, Japan

Received 21 July 2010; Accepted 23 May 2011

We report herein on two female siblings exhibiting mild intellectual disability, hypotonia in infancy, postnatal growth retardation, characteristic appearance of the face, fingers, and toes. Their healthy mother had a translocation between 9q34.1 and the 13pter. FISH and array CGH analysis demonstrated that the two children had an additional 8.5 Mb segment of the 9q34.1-qter at 13pter. The clinical features of the present cases were similar to those of previously reported 9q34 duplication cases; however, the present cases did not exhibit other abnormal behaviors, such as autistic features or attention deficit disorders, those are reportedly associated with 9q34 duplications. A 3.0 Mb region (9q34.1-q34.3) within 9q34 duplication in our patients are overlapped with duplication region of previously reported cases and is proposed to be critical for the presentation of several phenotypes associated with 9q34 duplications. © 2011 Wiley-Liss, Inc.

Key words: 9q34 duplication; intellectual disability; array CGH; dysmorphism

INTRODUCTION

Duplications of a distal region of the long arm of chromosome 9 (9q34) are rare and few cases have been reported. The first association between 9q34 duplications and phenotypic abnormalities were demonstrated in seven cases in a large pedigree [Allender et al., 1983]. The patients had low birth weight, initial poor feeding and thriving, slight psychomotor retardation, characteristic appearance of the face, fingers, and toes. Hyperactive behavior, heart murmur, and ptosis and strabismus were also noted. In another case, a girl of 3 years and 2 months carried a 9q34 duplication and a deletion of 3p26-pter due to a balanced translocation in her mother [Hodou et al., 1987]. This patient presented with dolichocephaly, characteristic facial appearance, and long thin fingers and toes, all of which are phenotypes noted in previous cases of 9q34 duplication; she also exhibited features associated with 3p terminal monosomy. In addition, duplication of 9q34-pter and monosomy of a small region on 12p13.3 in a male infant was described by Spinner et al. [1993]. The same patient was followed up at 18 years of age, and the duplicated and deleted regions were determined in detail by array-based comparative genomic hybridization (array CGH) analysis [Youns et al., 2010]. The patient exhibited autistic features, hyperactivity, and attention deficit disorder in addition to the features associated with 9q34 duplications reported previously. Gawlik-Kuklinska et al. [2007] reported the case of a 17-year-old girl with an interstitial 7.4 Mb duplication of 9q34.1-q34.3 determined by array CGH analysis and compared the clinical features of the patient with those of previous cases. This patient exhibited the features common to patients with 9q34 duplications and three additional phenotypes of food-seeking behavior, obesity, and secondary amenorrhea.

In this report, we present two female siblings with 9q34.1-qter duplications and compare the clinical features and 9q34 duplication region of these patients with those of two previously reported cases using array CGH analysis. We also discuss the loci potentially responsible for the several phenotypes associated with a specific segment of 9q34.
CLINICAL REPORTS

Patient 1. The patient was a 4-year-old girl and the first child of healthy, non-consanguineous Japanese parents. The family history was unremarkable. She was born at 40 weeks of gestation weighing 2,564 g and measuring 47.3 cm in length with an occipitofrontal circumference (OFC) of 33 cm, all within the standard range (10th–90th centile) for female Japanese neonates. The child was first evaluated at a cardiology clinic to investigate a heart murmur in the neonatal period. She was diagnosed with Ebstein anomaly, which was surgically repaired when she was 2-month old. At the age of 4 months, she was referred to our hospital due to generalized hypotonia and developmental delay. She rolled over at 12 months and sat up at 18 months. She stood with support at 24 months and started to walk unaided at 2.5 years. At 3 years of age, her height was 84 cm (−2.2 SD), body weight was 12.4 kg (−0.7 SD), and OFC was 49 cm (−0.2 SD). She could speak several meaningful words and understand simple sentences. Her developmental quotient (DQ) was 67, indicating mild intellectual disability. She was a sociable and friendly girl.

Clinical examination revealed that she had a characteristic facial appearance, including a round face, hypertelorism, almond-shaped palpebral fissures, telecanthus, depressed nasal bridge, short nose, microstomia, microretrognathia, short philtrum, and Cupid’s bow upper lip (Fig. 1A). Her fingers were slender but not tapered (Fig. 1C). Neurological examination revealed that the cranial nerves were intact except for strabismus. Ocular fundi were normal. She walked slowly, but no ataxia was evident. Muscle tonus of the extremities was normal. Tendon reflexes of extremities were normal, and pathological reflex was absent. There was no evidence of epilepsy. Routine laboratory investigations were normal.

Patient 2. The patient was a 3-year-old girl and was the second child of the parents of Patient 1. She was born at 40 weeks of gestation weighing 2,874 g, measuring 49 cm in length with an OFC of 34.3 cm (all normal values for female Japanese neonates). She exhibited generalized hypotonia, but no feeding problems were observed during the neonatal period. She was referred to our hospital at the age of 19 months due to developmental delay. She exhibited head control at the age of 4 months. She rolled over at 9 months, sat at 10 months, and cruised between 11 and 12 months. She started to walk unaided at 18 months. Her height at 3 years was 88 cm (−2.4 SD), body weight was 10.1 kg (−2.7 SD), and OFC was 47 cm (−0.7 SD). DQ at the age of 3 was 72, indicating mild intellectual disability. She routinely exhibited affectionate and sociable behavior. She also had a round face with full cheeks, hypertelorism, almond-shaped palpebral fissures, telecanthus, depressed nasal bridge, short nose, microstomia, microretrognathia, short philtrum, and Cupid’s bow upper lip (Fig. 1B). Ultrasonography of the abdomen showed no urogenital defects. No ophthalmic anomalies other than strabismus were found on routine evaluation. Neurological examination was not remarkable except strabismus. No epileptic seizures were observed. Routine laboratory investigations were normal. The clinical features of both patients and two previously reported cases of 9q34 duplication are summarized in Table I.

FIG. 1. A: Frontal and lateral views of Patient 1 at 3 years of age. Phenotypes include round face, hypertelorism, telecanthus, short nose, depressed nasal bridge, microstomia, microretrognathia, short philtrum, and Cupid’s bow upper lip. B: Frontal and oblique view of Patient 2 at 2 years of age. Phenotypes include round face, hypertelorism, almond-shaped palpebral fissures with telecanthus, short nose, depressed nasal bridge, microstomia, microretrognathia, short philtrum, and Cupid’s bow upper lip. C: Hands of Patient 1 with long and thin fingers. D: The right foot of Patient 1. She has long toes with increased space between the first and second toes.
MATERIALS AND METHODS

Cytogenetic Analysis

Cultured lymphoblastoid cells isolated from each patient were treated with colchicine (Sigma–Aldrich, St. Louis, MO) for 1 hr at a concentration of 20 ng/ml in culture medium, and then incubated in a hypotonic solution of 75 mM KCl at 37°C for 30 min. After incubation, cells were fixed with Carnoy’s fixative (3:1 mixture of methanol and acetic acid), spread on glass slides in a humid atmosphere and air-dried. Chromosomal analysis was carried out on GTG banded chromosomes at a resolution of 400–550 bands. Fluorescence in situ hybridization (FISH) was performed on metaphase chromosome spreads from each patient. Commercial probes covering subtelomeric regions were used according to the manufacturer’s protocols (ToTelVysion, Abbott Laboratories, Abbott Park, IL) [Flint et al., 1995]. In order to confirm the chromosomal rearrangement in detail, additional FISH analysis was carried out from the patients and their parents using a series of bacterial artificial chromosome (BAC) clones (Clontech Laboratories, Inc., Mountain View, CA) that map to chromosome regions 9q34 and 13q31.

Array CGH Analysis

Genomic DNA was isolated from peripheral blood lymphocytes of the two patients, their parents, and three normal controls by phenol/chloroform extraction. Array CGH analysis was performed using the Agilent Human Genome CGH 244K microarray platform (Agilent Technologies, Santa Clara, CA) according to standard protocols provided by the manufacturer. This array spans the entire human genome at a median resolution of approximately 8.9 kb. Genomic copy numbers were analyzed with Genomic Workbench (Standard Edition 5.0.14; Agilent Technologies).

Southern Blot Analysis

Genomic DNA samples (10 μg) from the patients, their parents, and the normal controls were digested with HindIII, separated on a 0.9% agarose gel, and transferred by the alkaline method to a nylon membrane (Hybond-N+; GE Healthcare, Tokyo, Japan). The membrane was sequentially hybridized with [α-32P]dCTP-labeled ABCA6 (exons 17–19) and SP2 (exons 4–7) cDNA. A 301 bp ABCA6 or a 798 bp SP2 cDNA probe was prepared by amplifying the cDNA library of human lymphoblastoid cells with AmpliTaq-
Gold (Applied Biosystems, Foster City, CA) using specific primer pairs for ABCA6 (sense: 5'-ATCTTTTCACTGATCAGTAAAG-3'; antisense: 5'-AGGCTCAATAACTTTAGTTT-3'), and for SP2 (sense: 5'-GTCTAGATCGCACTGCTCTT-3'; antisense: 5'-CCGGCCGCTGGCTTTA-3'), respectively. The PCR products were subcloned into pGEM-T easy vector (Promega, Madison, WI), and the nucleotide sequence of the probes was confirmed. Hybridization was performed in hybridization solution containing 5× standard saline citrate (SSC), 5× Denhardt’s solution, and 0.5% SDS at 66°C overnight. The membrane was washed three times with 2× SSC containing 0.1% SDS at 37°C for 20 min and once with 0.1× SSC containing 0.1% SDS at 55°C for 10 min, and then radioactivity was quantified with a BAS 1800 image analyzer (FUJIFILM, Tokyo, Japan). The radioactivity of ABCA6 versus SP2 was determined for both patients and their parents (RP1, RP2, RF, RM) relative to the mean of the three normal controls (RC).

RESULTS

Additional 9q Subtelomeric Signal

The G-banding pattern of the both patients showed a 46,XX normal female karyotype. FISH with probes for subtelomeric regions revealed an additional 9q subtelomeric signal on the short arm of a D-group chromosome (chromosome 13, 14, or 15) in both patients (data not shown).

9q34 Duplication

To assess the chromosomal rearrangements in more detail, FISH analysis was performed in both patients and their parents with three BAC clones (RP11-40A7 and RP11-81N19) from chromosome 9q34 and RP11-524C15 from chromosome 13q31. The result indicated that the mother had a translocation; a 9q34.1-qter segment from one chromosome 9 was translocated to the terminus of chromosome 13p (Fig. 2, lower panel, indicated by a yellow arrow). Both patients had two normal chromosomes 9 and the derivative chromosome 13, which had an additional 9q34.1-qter segment at the p-terminal (Fig. 2, lower panels, indicated by yellow arrows). The father did not show any abnormalities (data not shown). These results indicate that the additional 9q34.1-qter segment at the p-terminal of chromosome 13 was of maternal origin (Fig. 2). The breakpoint of the translocation fell between two BAC clones at RP11-81N19 (129.2 Mb from the 9p terminus) and RP11-40A7 (133.4 Mb). Detailed mapping of the 13p breakpoint is not necessary because 13p does not code any genes. Thus, the duplicated segment was estimated to be 6.8–11.0 Mb derived from the 9q-terminus at position 140.2 Mb [46,XX.ish der(13)(9;13)-(q34.1;pter)mat] (Fig. 2).

8.5 Mb Duplication of 9q34.1-qter

We performed array CGH using genomic DNA from each patient to determine the precise size of the additional 9q34 segment and
identify any other genomic abnormalities. Array CGH analysis of samples from Patients 1 and 2 demonstrated that the genomic copy number of 9q34.1-qter was 1.5-fold higher than the normal region (Fig. 3A,B). The size of the 9q34.1-qter duplication in both patients was approximately 8.5 Mb, from positions 131.7 to 140.2 Mb of chromosome 9 (Fig. 3). The breakpoint (position 131.7 Mb) of the 9q34 duplication in both patients was located in FNBP1, which encodes formin-binding protein 1. Analyses of Patients 1 and 2 revealed 12 and 15 copy number variations (CNVs), respectively (data not shown). CNVs are generally defined as the copy number differences of genomic DNA larger than 1 kb that vary in copy number between individuals. Patients 1 and 2 both had a 0.5-fold decrease in the genomic copy number of ABCA6, which encodes ATP-binding cassette, sub-family A, member 6; this is not recognized as a CNV (MIM 612504; Supplemental Fig. A and B).

ABCA6 Deletion in Both Patients and Their Mother

To confirm whether ABCA6 was deleted in both patients and their parents, we performed Southern blot analysis using two cDNA probes against ABCA6 (exons 17–19) and SP2 (exons 4–7). SP2 maps to 17q21, approximately 21 Mb proximal to ABCA6, and was not deleted in either patient based on the array CGH analysis. Southern blot analysis showed a decreased radioactive signal from ABCA6 in family members (Supplemental Fig. C). When the mean ratio of ABCA6 signal to SP2 signal of the three normal controls was defined as 1.0, the ratio of ABCA6 signal to SP2 signal of the patients and their mother was approximately 0.5 and their father was 0.85 (Supplemental Fig. D). Thus, the both patients and their mother were heterozygous for an ABCA6 deletion.

DISCUSSION

Duplications of 9q34 cause intellectual disability and multiple congenital anomalies. Reported cases presented with a variety of clinical features depending on the size of the duplication and the presence of other chromosomal abnormalities [Allderdice et al., 1983; Hodou et al., 1987; Spinner et al., 1993; Gawlik-Kuklinska et al., 2007; Youngs et al., 2010]. Our patients had a 9q34.1-qter duplication and partial 13p monosomy due to a translocation between 9q34.1 and 13pter in their healthy mother. Array CGH and Southern blot analyses confirmed that these patients had a 9q34.1-qter duplication and a heterozygous deletion of ABCA6 (17q24). Because 13p does not code for any genes and the heterozygous deletion of ABCA6 did not cause any phenotypic abnormalities in the mother, the present patients exhibited “pure” 9q34.1-qter duplications without any other chromosomal abnormalities involving coding genes.

9q34 duplication has been analyzed in detail using array CGH in only two other patients. Gawlik-Kuklinska et al. [2007] reported the case of the female with a 7.4 Mb (RP11-269P11 to RP11-295G24; 127.3–134.7 Mb) duplication of 9q34.1-q34.3 (Fig. 4) and compared the patient’s clinical features to those of previously reported 9q34 duplication cases [Spinner et al., 1993], including a male patient later shown to have a 13.8 Mb (126.4–140.2 Mb) duplication of 9q33.3-qter [Youngs et al., 2010] (Fig. 4). The following

![FIG. 3. A: Graphical representation of the results of the array CGH analysis (Agilent 244K oligonucleotide array) from Patient 1 shows the duplication of distal 9q34.1-qter (upper panel). The x- and y-axis denote genomic position and log2 ratio, respectively. B: Graphical representation of the results of the array CGH analysis from Patient 2 also shows the duplication of distal 9q34.1-qter (upper panel). The breakpoint in 9q34 was located in the FNBP1 gene (131.7 Mb) in both patients (lower panels of A and B), which indicated that the size of the duplication was approximately 8.5 Mb (131.7–140.2 Mb) according to NCBI human genome build 36.3.](image-url)
features were common to both patients in these reports: hypotonia, intellectual disability, developmental delay, characteristic head and facial features associated with dolichocephaly, facial asymmetry, narrow palpebral fissures, deep-set eyes, long nose, prominent chin, microstomia, microretrognathia, and characteristic features of the extremities, including long thin fingers and toes and camptodactyly (Table I). Gawlik-Kuklinska et al. [2007] concluded a 7.4 Mb extremities, including long thin fingers and toes and camptodactyly microstomia, microretrognathia, and characteristic features of the narrow palpebral fissures, deep-set eyes, long nose, prominent chin, intellectual disability, developmental delay, characteristic head and features were common to both patients in these reports (Fig. 4, Table I). The distal-most segment of 9q34 (134.7–140.2 Mb) in our patients is the strongest candidate for the origin of these phenotypes (Fig. 4). However, these phenotypes were not observed in Patient 2 [Youngs et al., 2010], who had the same 9qter duplication. Therefore, the duplication of the proximal segment (127.3–131.7 Mb) of the overlapping region may have more impact on facial appearance than the duplication of the distal segment of the overlapping region. Clinical analyses of more patients with 9qter duplication (134.7–140.2 Mb) are necessary to determine the phenotypes caused by duplication of this region. It should be noted that DECIPHER (Database of Chromosomal Imbalance and Phenotype in Human using Ensembl Resources) includes two patients (P254131 and P255167) with the same 9q34.2–qter duplication (133.7–140.1 Mb) and heterozygous deletion of 17pter (0.01–0.41 Mb) (Fig. 4, numbers 2, 3). These patients exhibited hypotonia (non-myopathic), intellectual disability, developmental delay, patchy café au lait pigmentation spots on the skin, and speech delay. The heterozygous 17pter 0.4 Mb deletion has not been reported to cause any diseases, including intellectual disability. Another patient (P253579) presenting with facial abnormality, intellectual disability, and developmental delay had a 9q34.1–q34.2 duplication (132.3–133.5 Mb) in the 3.0 Mb overlapping region (Fig. 4, number 4). Notably, these two duplicated regions are included in the duplicated region in our patients, but they do not overlap with each other. These findings suggest the following correlations between duplicated chromosomal segments of 9q34 and phenotypes: (1) two duplicated segments (133.7–140.1 Mb) and (132.3–133.5 Mb) in 9q34 are associated with intellectual disability and developmental delay; and (2) the locus or loci associated with characteristic facial appearance may be within a duplicated region of 1.2 Mb (127.3–133.5 Mb), even though the detailed clinical features of P253579 are not available. Of the 18 genes that map to this 1.2 Mb region, individual duplications of 12 genes are reported in the Database of Genomic Variants (DGV; found in normal population). Thus, increased copy number of one or more of the other six genes (FUBP3, EXOSC2, ABL1, NUP214, FAM78A, and PPAPDC3) in this region could be the cause of the intellectual disability, developmental delay, and characteristic facial appearance observed in our patients and P253579.

Chromosomal rearrangements, arising from unequal recombination between repeated sequences, are found in a subset of patients with autism spectrum disorder [Marshall et al., 2008]. Abnormal behaviors, including hyperactive behavior [Allenderice et al., 1983], food-seeking behavior [Gawlik-Kuklinska et al., 2007], hyperactivity, attention deficit disorders, and atypical autism [Youngs et al., 2010], were also reported in some patients with 9q34 duplication. Unlike these patients, our patients exhibited friendly and affectionate social behaviors and did not exhibit autistic features or attention deficit disorder. It is important to repeatedly monitor the behaviors...
of our patients to determine whether the 9q34.1-qter duplication is associated with abnormal behaviors. In summary, our findings indicate that the duplication of 9q34 is a heterogeneous clinical condition and duplications of different segments of 9q34 are associated with a variety of symptoms. Genomic and clinical analyses of more patients carrying 9q34 duplications are necessary to better characterize the correlation between clinical phenotypes and specific 9q34 loci.

ACKNOWLEDGMENTS

We are grateful to the patients who participated in this study and their families. This study was supported by the Takeda Science Foundation (to N.W.) and the Health Labour Sciences Research Grant (to S.M. and N.W.).

REFERENCES

